A Brain-Computer Interface Brain Training Game “CogoLand” for Children with Attention Deficit Hyperactivity Disorder

Complementing conventional approaches for treating ADHD

20 September 2019
Children becoming increasingly distracted?

Lack of attention or focus?
Executive Summary

Attention Deficit Hyperactivity Disorder (ADHD) is a cognitive disorder that afflicts approximately 2-7% of children globally. There is no cure, however the symptoms can be managed therapeutically. Treatment involves pharmaceutical intervention with the prescription of medications, or with behavioural intervention - where a clinician advises the parent(s) on how to reach certain behavioural outcomes with the ADHD child.

Prescription medications have the potential to cause addiction in the child and come with various side effects. Their dosages have to be carefully calibrated for maximum efficacy and minimal disruption of the child’s function. Multiple appointments with the doctors are needed to tune requisite adjustments to the dosage. The efficacy of medication is short-term but also becomes less effective on the symptoms over time.

Behavioural therapy on the other hand is not as effective as medication but it is also much less invasive. Parents will need to make time for scheduling appointments with a therapist as well as, monitoring and following up on the behavioural outcomes of the child.

Clinical trials have proven that the use of neurofeedback with Brain-Computer-Interface (BCI) based games are effective at reducing the symptoms of ADHD, complementing current therapies by being non-invasive, conveniently digital and as such can be practiced with ease while avoiding the downsides being too much of a burden on time and monetary resources.

What is ADHD?
The Facts

Growing number of ADHD cases in people aged 5 to 44 years worldwide

Children with ADHD aged 5-19 years are estimated at 5.29%, while adults aged 20-44 years are estimated at 2.8%

175.1 million

185.5 million

2016

2025

Current Treatments

Medications

They only treat the symptoms in the short term and need to be taken regularly in the long term. Without health insurance coverage, they can get expensive.

Medications also come with potentially significant side effects, that range from reduced appetite, headaches, sleep problems, reduced creativity, blunting of emotions and suicide ideation.

Behavior Therapy

Behavioural management, though important with some good results, has not been as effective as drugs in treating ADHD symptoms.

The treatments are effective only in the short-term as they lose effectiveness in the long-term due to compliance and sustainability. It can be very expensive as it requires consultations with clinicians.
Clinical Trials

Our therapeutic approach uses non-invasive BCI-based games to help children train themselves to learn to focus better.

This patented solution was developed from over 10 years of research with clinical trials by Singapore’s Institute of Mental Health, Duke-NUS Medical School and A*STAR’s Institute for Infocomm Research (I²R).

In the latest clinical trial that involved 172 ADHD children, it showed that children who received 8 weeks of intervention had significant improvements in their inattentive symptoms than those who did not receive any intervention, when rated by blinded clinicians.

Additionally, through brain scans (fMRI), children in the intervention group showed reorganised brain network activity – increased closeness in prefrontal region of the brain that is associated with attention (i.e. less inattentive symptoms).
How It Works?

Machine learning algorithms on mobile applications interpret mental states in real-time, e.g. **attention**, **relaxation**, **mental workload** and **fatigue**, used to drive interventions for various brain challenges.

Brainwaves or EEG signals are captured passively through the Neeuro SenzeBand.

EEG Signals

Visual and audio stimuli through Neeuro’s mobile applications provide positive reinforcement to the user.

Interventions are delivered through mobile applications that are Bluetooth paired with the SenzeBand.
Clinical Application - CogoLand

The CogoLand game trains the user on attention and inhibition.

Attention level of the user computed from his/her EEG signals drives the virtual character on the screen to run faster.

This real-time visual feedback of the running virtual character motivates the user in learning how to focus.
Investigated on 10 unmedicated ADHD children, treated with 20 sessions over 10 weeks across 2 groups: intervention versus control.

The intervention group showed greater improvement in attentive scores on the ADHD Rating Scale (ADHD RS) as reported by parents and teachers, compared to the control group without intervention.

66 boys with ADHD went through the BCI-based game intervention for 24 sessions over 8 weeks. Assessments and brain scans (fMRI) were obtained at baseline and after 8 weeks.

The intervention group showed reorganised brain network activity – increased closeness in prefrontal region of the brain that is associated with attention (i.e. less inattentive symptoms).

Randomised control trial (RCT) conducted for 172 children aged 6 to 12 attending an outpatient child psychiatry clinic diagnosed with ADHD and not receiving concurrent pharmacotherapy or behavioural intervention.

It showed children who received 8 weeks of intervention had significant improvements in their inattentive symptoms than those who did not receive any intervention, when rated by blinded clinicians.

Licensed the background technology and commercialised into a home-based kit with the Neeuro SenzeBand, incorporating enterprise features for tracking and monitoring.

Parents and children are able to carry on with their focus training in the convenience of their home.
In this study, the BCI-based attention brain training game system was investigated on 10 unmedicated ADHD children aged between 7 to 12 years old with inattentive and combined subtype symptoms.

Treatment consisted 20 sessions over 10 weeks across 2 groups: intervention versus control.

The intervention group showed greater improvement in attentive scores on the ADHD Rating Scale (ADHD RS) as reported by parents and teachers, compared to the control group without intervention.

Reported by Parents:

<table>
<thead>
<tr>
<th>Intervention Group</th>
<th>% Improv.</th>
<th>Control Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADHD RS Inattention Score</td>
<td>16%</td>
<td>-4%</td>
</tr>
<tr>
<td>ADHD RS Hyperactive Score</td>
<td>23.5%</td>
<td>11.4%</td>
</tr>
</tbody>
</table>

Reported by Teachers:

<table>
<thead>
<tr>
<th>Intervention Group</th>
<th>% Improv.</th>
<th>Control Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADHD RS Inattention Score</td>
<td>36%</td>
<td>6.5%</td>
</tr>
<tr>
<td>ADHD RS Hyperactive Score</td>
<td>33%</td>
<td>30%</td>
</tr>
</tbody>
</table>

A Brain-Computer Interface Based Attention Training Program for Treating Attention Deficit Hyperactivity Disorder

Choon Guan Lim1,3, Tih Shih Lee2, Cuntai Guan3, Daniel Shuen Sheng Fung1, Yudong Zhao3, Stephanie Sze Wei Teng1, Chialing Zhang3, K. Ranga Rama Krishnan1

1 Department of Child and Adolescent Psychiatry, Institute of Mental Health, Singapore; Singapore; 2 Duke-NUS Medical School, Singapore; Singapore; 3 National Institute of Biomedical Sciences, Singapore, Singapore; Singapore; 4 Singapore Clinical Research Institute, Singapore, Singapore

Abstract

Attention deficit hyperactivity disorder (ADHD) symptoms can be difficult to treat. We previously reported that a 20-session brain-computer interface (BCI) attention training programme improved ADHD symptoms. Here, we investigate a new, more intensive BCI-based attention training game system on 20 unmedicated ADHD children (6-12 years old) with significant inattentive symptoms, combined and inattentive ADHD subtypes. The new system monitored attention through a head band with dry EEG sensors, which were used to drive a fixed forward game. The same treatment was followed by a once-monthly booster training regime for 3 sessions after the intervention period. Parents rated ADHD symptoms reported by children. The treatment consisted of 24 sessions of training over 8 weeks followed by 3 once-monthly booster training sessions with only an intervention group.

Following the completion of the intervention, parents’-rated ADHD rating scale showed significant improvements in inattentive symptoms and hyperactive-impulsive symptoms.

In this study, the BCI-based attention brain training game system was investigated on 20 unmedicated ADHD children aged between 6 to 12 years old with inattentive and combined subtype symptoms.

The treatment consisted of 24 sessions of training over 8 weeks followed by 3 once-monthly booster training sessions with only an intervention group.

Following the completion of the intervention, parents’-rated ADHD rating scale showed significant improvements in inattentive symptoms and hyperactive-impulsive symptoms.

Better brain scores reflected in the training game was associated with lower ADHD symptoms reported by parents.

The results suggest that the additional 3 booster sessions did not improve the symptoms further.

Reported by Parents:

<table>
<thead>
<tr>
<th></th>
<th>% Improv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADHD RS Inattention Score</td>
<td>26%</td>
</tr>
<tr>
<td>ADHD RS Hyperactive Score</td>
<td>30%</td>
</tr>
</tbody>
</table>

After Booster Sessions:

<table>
<thead>
<tr>
<th></th>
<th>% Improv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADHD RS Inattentive Score</td>
<td>-4%</td>
</tr>
<tr>
<td>ADHD RS Hyperactive Score</td>
<td>6.4%</td>
</tr>
</tbody>
</table>

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0046692
Clinical Trial – Phase 2 Brain Imaging Study

This neuroimaging study that is part of a larger randomised controlled study consisting of 172 children with ADHD. This study consisted of 66 boys with ADHD with symptoms of inattentive and combined subtype that went through the BCI based game intervention for 24 sessions over 8 weeks and they were split between intervention and non-intervention groups.

Assessments and brain scans (fMRI) were obtained at baseline and after 8 weeks.

Different brain networking activity were observed in both groups. Children in the non-intervention group showed more wide spread connectivity between spatially separated brain regions (i.e. increased functional connectivity) which is associated with higher ADHD symptoms.

Children in the intervention group showed reorganised brain network activity – increased closeness in prefrontal region of the brain that is associated with attention (i.e. less inattentive symptoms).

In summary, more focused brain area is activated after BCI intervention as compared to very wide spread activation of multiple brain areas in children from the non-intervention group.

https://www.nature.com/articles/s41398-018-0213-8
Clinical Trial – Phase 2 Randomised Controlled Trial

A randomised controlled trial (RCT) was conducted for 172 children aged 6 to 12 attending an outpatient child psychiatry clinic diagnosed with ADHD and not receiving concurrent pharmacotherapy or behavioural intervention.

The intervention involved 3 weekly sessions of BCI-based training for 8 weeks, followed by 3 training sessions per month over the subsequent 12 weeks.

The intervention group showed significant improvement in their inattentive symptoms based on clinician rated ADHD Rating Scale (ADHD RS) Inattention score.

Results suggests that this intervention is an option for treating milder cases or as an adjunctive treatment.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216225
https://www.clinicaltrials.gov/ct2/show/NCT01344044?term=NCT01344044&rank=1
Having invested over 10 years of research and development, including clinical trials, the available evidence with BCI brain training with ADHD children showed that those who received 8 weeks of intervention had significant improvements in their inattentive symptoms compared to those that did not.

The BCI-based brain training game "CogoLand" used in clinical studies will soon be made available to children with ADHD.

Today, Neeuro has adapted the BCI technology used in "CogoLand" making it available for children to seniors seeking brain training to improve their cognitive functions, through its solution "Memorie" and "Smarty Knights". These are paired with the Neeuro "SenzeBand" EEG headband. They provide BCI-based brain training in the 5 pillars of cognitive functions: (a) attention, (b) memory, (c) spatial ability, (d) decision making and (e) cognitive flexibility. Additionally, it includes educational content in English and Mathematics while providing real time feedback on attention levels.
Disclaimer

All information provided in this white paper is for informational purposes only. This white paper is not meant to be used, nor should it be used, to diagnose or treat any medical condition. For diagnosis or treatment of any medical problem, consult your own physician. Neeuro Pte. Ltd. is not responsible for any specific health or allergy needs that may require medical supervision and are not liable for any damages or negative consequences from any treatment, action, application or preparation to any person reading or following the information in this white paper.

References are provided for information purposes only and do not constitute endorsement of any website or other sources. Readers should be aware that websites listed in this white paper may change.
Contact Us

+65 6397 5153
contact@neuro.com
www.neuro.com